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Abstract
We have used the density-functional theory to study the effect of varying
temperature on the isotropic–nematic transition of a fluid of molecules
interacting via the Gay–Berne intermolecular potential. The nematic phase
is found to be stable with respect to isotropic phase in the temperature range
0.80 � T ∗ � 1.25. Pair correlation functions needed as input information
in density-functional theory is calculated using the Percus–Yevick integral
equation theory. We find that the density-functional theory is good for studying
the isotropic–nematic transition in molecular fluids if the values of the pair-
correlation functions in the isotropic phase are known accurately. We have
also compared our results with computer simulation results wherever they are
available.

1. Introduction

Liquid crystals are characterized by long-range orientational order. This order originates
from the anisotropic nature of the intermolecular interactions. Detailed information about the
complex interactions is not directly accessible from experiments. Such knowledge is, however,
essential for the understanding of physical and chemical properties of liquid crystalline systems.
Therefore, there is considerable interest in developing and improving theoretical models
for inter- as well as intramolecular interactions, which can be employed in the analysis of
experimental data.

A system consisting of anisotropic molecules is known to exhibit liquid crystalline phases
in between the isotropic liquid and the crystalline solid. The liquid crystalline phases that
commonly occur in a system of anisotropic molecules are nematic and smectic phases [1, 2].
The property of orientational ordering in the nematic liquid crystalline phase arises from the
presence of anisotropic intermolecular forces. The most commonly used models for these
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systems are hard ellipsoids of revolution, hard spherocylinders [3–5], a cut sphere, the Kihara
core model [6, 7], and the Gay–Berne [8] model. All these are single-site models and refer
to rigid molecules of cylindrical symmetry. Even for these simple models, calculating the
complete phase diagram is difficult.

A realistic pair-potential between nonspherical molecules is a fairly complex theoretical
object, but, just as most of our knowledge about simple fluids of spherical molecules has been
deduced from the Lennard-Jones potential, much can be learned about systems of nonspherical
molecules from the Gay–Berne (GB) potential [8]. The computer simulation results [9–19]
show that the GB potential is capable of forming nematic, smectic A, smectic B, and an ordered
solid in addition to the isotropic liquid. The variety of mesophases formed by the anisotropic
molecules interacting via the GB potential has stimulated the interest of researchers. The
introduction of the attractive forces into the molecular model makes the phase diagram a little
more realistic; therefore, the GB potential has become a standard model for the study of liquid
crystalline phases.

The intermolecular pair potential proposed by Gay and Berne can be written as

u(1, 2) = U(û1, û2, r̂)

= 4ε(û1, û2, r̂)
{[

σ0

r − σ(û1, û2, r̂) + σ0

]12

−
[

σ0

r − σ(û1, û2, r̂) + σ0

]6}
. (1)

ûi is the axial vector of molecule i and r̂ is the unit vector along r = r2 − r1, where r1 and
r2 are the positions of the centers of mass of molecules 1 and 2, respectively. σ(û1, û2, r̂) and
ε(û1, û2, r̂) are the orientation-dependent range- and strength-parameters respectively, and are
defined as

σ(û1, û2, r̂) = σ0

{
1 − 1

2
χ

[
(û1 · r̂ + û2 · r̂)2

1 + χ(û1 · û2)
+ (û1 · r̂ − û2 · r̂)2

1 − χ(û1 · û2)

]}− 1
2

, (2)

ε(û1, û2, r̂) = ε0ε
υ(û1, û2)ε

′μ(û1, û2, r̂), (3)

where

ε(û1, û2) = [1 − χ2(û1 · û2)
2]−1/2, (4)

and

ε′(û1, û2, r̂) = 1 − 1

2
χ ′

{
(û1 · r̂ + û2 · r̂)2

1 + χ ′(û1 · û2)
+ (û1 · r̂ − û2 · r̂)2

1 − χ ′(û1 · û2)

}
, (5)

with

χ = (x2
0 − 1)

(x2
0 + 1)

and χ ′ = (k ′ 1
μ − 1)

(k ′ 1
μ + 1)

,

where x0 is the molecular elongation, i.e. the ratio of molecular length-to-breadth, and k ′ is the
ratio of the potential well depths for the side-by-side and end-to-end configurations. Note that
the GB potential (1) reduces to the spherical Lennard-Jones potential when both x0 and k ′ are
equal to unity.

The exact form of the GB potential is determined by four parameters x0, k ′, μ, and υ.
The original formulation, which was designed to mimic a line of four Lennard-Jones sites, had
the parameters x0 = 3.0, k ′ = 5, μ = 2 and υ = 1. Varying these parameters gives rise
to an infinite number of Gay–Berne potentials. These have been shown to give rise to stable
nematic and smectic phases. The computer simulation studies show that this potential has been
widely studied for a number of parameterizations [10–19] and can be regarded as one of the
most important anisotropic potentials in use at present. Some theoretical attempts have also
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been made to calculate the GB phase diagram using density-functional approach, perturbation
methods and virial approximations [20–24].

The purpose of this paper is to test the accuracy of the density-functional theory (DFT)
by comparing some simulation results with theoretical predictions. We have used the
density-functional theory of freezing to locate the isotropic–nematic transition for (reduced)
temperatures T ∗ � 1.25 of the Gay–Berne liquid crystal model with the original set of
parameters υ = 1, μ = 2, and anisotropy parameters x0 = 3.0 and k ′ = 5. This allows us to
analyze the dependence of the coexistence properties upon changes in temperature. The paper is
arranged as follows. In section 2, we describe briefly the Percus–Yevick (PY) integral equation
theory for the calculation of the pair-correlation functions of the isotropic phase. The essential
details of the density-functional theory of freezing have been discussed in section 3. Results
for the isotropic–nematic (I–N) transition for a wide range of temperatures are presented and
discussed in section 4.

2. Pair-correlation functions of the isotropic phase: PY theory

The pair-correlation function (PCF) g(1, 2) is related to two-particle density distribution
ρ(1, 2) as

g(1, 2) = ρ(1, 2)

ρ(1)ρ(2)
, (6)

where ρ(i) is the single-particle density distribution. The two-particle density distribution
ρ(1, 2) measures the probability of finding simultaneously a molecule in a volume element
dr1 dΩ1 centered at (r1,Ω1) and a second molecule in a volume element dr2 dΩ2 at (r2,Ω2).
The structural information of an isotropic liquid is contained in the two-particle density
distribution ρ(1, 2) as the single-particle density distribution is constant, independent of
position and orientation. Since for the isotropic liquid ρ(1) = ρ(2) = ρ f = 〈N〉/V , where
〈N〉 is the average number of molecules in the volume V ,

ρ2
f g(r,Ω1,Ω2) = ρ(r,Ω1,Ω2), (7)

where r = r2 − r1. In the isotropic phase, ρ(1, 2) depends only on the distance |r2 − r1| = r ,
the orientation of molecules with respect to each other, and on the direction of vector r (r̂ = r/r
is a unit vector along r).

The pair-correlation function g(1, 2) of the isotropic liquid is of particular interest, as it
is the lowest-order microscopic quantity that contains information about the orientational and
translational structures of the system and also has direct contact with intermolecular (as well
as with intramolecular) interactions. The values of g(1, 2) as a function of intermolecular
separation and orientations at a given temperature and density are found either by computer
simulations or by solving the Ornstein–Zernike (OZ) equation

h(1, 2) = c(1, 2) + ρ f

∫
c(1, 3)h(2, 3) d3, (8)

where d3 = dr3 dΩ3 and h(1, 2) = g(1, 2)−1 and c(1, 2) are, respectively, the total and direct
pair-correlation functions (DCFs), using a suitable closure relation such as the Percus–Yevick
(PY) integral equation, hypernetted chain (HNC) relations. Approximations are introduced
through these closure relations [25].

The PY closure relation is written in various equivalent forms. The form adopted here is

c(1, 2) = f (1, 2)[g(1, 2) − c(1, 2)], (9)

where f (1, 2) = exp[−βu(1, 2)]− 1 is the Mayer function, β = (kBT )−1 and u(1, 2) is a pair
potential of interaction. Since, for the isotropic liquid, DCF is an invariant pair-wise function,
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it has an expansion in a body-fixed (BF) frame in terms of a basic set of rotational invariants,
as

c(1, 2) = c(r12,�1,�2) =
∑
l1l2m

cl1l2m(r12)Yl1m(�1)Yl2m(�2), (10)

where m = −m. The coefficients cl1l2m(r12) are defined as

cl1l2m(r12) =
∫

c(r12,Ω1,Ω2)Y
∗
l1m(Ω1)Y

∗
l2m(Ω2) dΩ1 dΩ2. (11)

Expanding all the angle-dependent functions in the BF frame, the OZ equation reduces to a set
of algebraic equation in Fourier space,

hl1l2m(k) = cl1l2m(k) + (−1)m ρ f

4π

∑
l3

cl1l3m(k)hl3l2m(k), (12)

where the summation is over allowed values of l3. The PY closure relation is expanded in
spherical harmonics in the body-fixed or space-fixed (SF) frame. Numerically, it is easier
to calculate BF harmonic coefficients than the SF harmonic coefficients. The two harmonic
coefficients are related through a linear transformation,

Al1l2m(r12) =
∑

l

[
2l + 1

4π

] 1
2

Al1l2l(r12)Cg(l1l2l; mm0), (13)

or,

Al1l2l(r12) =
∑

m

[
4π

2l + 1

] 1
2

Al1l2m(r12)Cg(l1l2l; mm0). (14)

The general function A(1, 2) may be either h(1, 2) or c(1, 2).
The iterative numerical solution of the PCFs can be carried out in a manner described

elsewhere [26, 27]. Note that in any numerical calculation we can handle only a finite number
of the spherical harmonic coefficients for each orientation-dependent function. The accuracy
of the results depends on this number. As the anisotropy in the shape of the molecules (or in
interactions) and the value of liquid density ρ f increases, more harmonics are needed to get
proper convergence. We have found that the series becomes converged if we truncate the series
at the value of l indices equal to 6 for molecules with x0 � 3.0 [26]. Though it is desirable
to include higher-order harmonics, i.e. for l > 6, this will increase the computational time
manifold. Our interest is in using the data of the harmonics of PCFs for freezing transitions
where low-order harmonics are generally involved. The only effect the higher-order harmonics
appear to have on these low-order harmonics is to modify the finer structure of the harmonics
at small values of r whose contributions to the structural parameters (to be defined later) are
negligible.

We have solved the PY equation for the GB fluid with parameters x0 = 3.0, k ′ = 5,
μ = 2 and υ = 1 at a wide range of reduced temperatures T ∗(= kBT/ε0) and densities
η[= (π/6)ρ f σ

3
0 x0]. In figures 1 and 2, we compare the values of g(r) = 1 + h000(r)/4π

with the computer simulation results of Miguel [9] at T ∗ = 1.25 and densities η = 0.455 53
and 0.534 07, respectively. Here a full line shows the computer simulation results. From these
figures we find that the results obtained from the PY theory are in good qualitative agreement
with the computer simulation results. However, the quantitative agreement needs improvement.
Since computer simulation results are not available for other harmonics of PCFs, we do not plot
them here.

In figures 3 and 4 we also plot the SF c-harmonics c220(r) and c440(r) respectively, scaled
by (4π)

3
2 for x0 = 3.0 and η = 0.44 found by the PY approximation at T ∗ = 1.25, 0.95 and

4
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Figure 1. Pair-correlation function of the center of mass g(r) for x0 = 3.0, k ′ = 5, T ∗ = 1.25,
and η = 0.4553. The dashed curve is our PY result and the solid curve is the simulation result of
Miguel [9].

Figure 2. Same as in figure 1, but for x0 = 3.0, k ′ = 5, T ∗ = 1.25, and η = 0.534 07.

0.80. We note that these functions are short-ranged, decaying very quickly outside the region
r/σ0 � 3.0. The amplitudes of c220(r) and c440(r) within the molecular core increase slightly
as T ∗ is lowered. These curves reveal the same nature as shown by Allen et al [28].
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Figure 3. The SF spherical harmonic coefficient c220(r)/(4π)3/2 for the GB fluid at x0 = 3.0,
k ′ = 5, μ = 2, and υ = 1. The solid, the dashed, and the dotted curves are the PY results for
η = 0.44 at T ∗ = 1.25, 0.95, and 0.80, respectively.

Figure 4. Same as in figure 3, but for c440(r)/(4π)3/2.

3. Density-functional theory of freezing

In the density-functional theory (DFT) approach, one uses the grand thermodynamic potential
to locate the transition. The grand thermodynamic potential is defined as

−W = β A − βμ

∫
dx ρ(x), (15)

6
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where A is the Helmholtz free energy, μ is the chemical potential, and ρ(x) is a singlet
distribution function. It is convenient to subtract the isotropic fluid thermodynamic potential
from W and write it as [29]

�W = W − W f = �W1 + �W2, (16)

with

�W1

N
= 1

ρ f V

∫
dr dΩ

[
ρ(r,Ω) ln

(
ρ(r,Ω)

ρ f

)
− �ρ(r,Ω)

]
, (17)

and
�W2

N
= − 1

2ρ f

∫
dr12 dΩ1 dΩ2 �ρ(r1,Ω1)c(r12,�1,�2)�ρ(r2,Ω2). (18)

Here �ρ(x) = ρ(x) − ρ f , where ρ f is the density of the coexisting liquid.
The minimization of �W with respect to arbitrary variation in the ordered phase density,

subject to a constraint that corresponds to some specific feature of the ordered phase, leads to

ln
ρ(r1,Ω1)

ρ f
= λL +

∫
dr2 dΩ2 c(r12,�1,�2; ρ f )�ρ(r2,Ω2), (19)

where λL is Lagrange multiplier which appears in the equation because of constraint imposed
on the minimization.

Equation (19) is solved by expanding the singlet distribution ρ(x) in terms of the order
parameters that characterize the ordered structures. One can use the Fourier series and Wigner
rotation matrices to expand ρ(r,Ω). Thus

ρ(r,Ω) = ρ0

∑
q

∑
lmn

Qlmn(Gq) exp(iGq · r)Dl
mn(Ω), (20)

where the expansion coefficients

Qlmn(Gq) = 2l + 1

N

∫
dr

∫
dΩ ρ(r,Ω) exp(−iGq · r)D∗l

mn(Ω), (21)

are the order parameters which measure the nature and strength of the ordering, Gq is the
reciprocal lattice vectors, ρ0 is the mean number density of the ordered phase, and D∗l

mn(Ω) is
the generalized spherical harmonics or Wigner rotation matrices [30]. Note that, for a uniaxial
system consisting of cylindrically symmetric molecules, m = n = 0 and, therefore, one has

ρ(r,Ω) = ρ0

∑
l

∑
q

Qlq exp(iGq · r)Pl(cos θ), (22)

and

Qlq = 2l + 1

N

∫
dr

∫
dΩ ρ(r,Ω) exp(−iGq · r)Pl(cos θ), (23)

where Pl(cos θ) is the Legendre polynomial of degree l and θ is the angle between the
cylindrical axis of the molecule and the director.

In the present calculation we consider two orientational order parameters

P̄l = Ql0

2l + 1
= 〈Pl(cos θ)〉, (24)

with l = 2 and 4: one order parameter corresponding to the positional order along the z-axis,

μ̄ = Q00(Gz) =
〈
cos

(
2π

d
z

)〉
, (25)

7
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(d being the layer spacing) and one mixed-order parameter that measures the coupling between
the positional and orientational ordering, defined as,

τ = 1

5
Q20(Gz) =

〈
cos

(
2π

d
z

)
Pl(cos θ)

〉
. (26)

The angular brackets in the above equations indicate the ensemble average.
The following order parameter equations are obtained by using equations (20)–(22):

P̄l = 1

2d

∫ d

0
dz1

∫ π

0
sin θ1 dθ1 Pl(cos θ1) exp[sum], (27)

μ̄ = 1

2d

∫ d

0
dz1

∫ π

0
sin θ1 dθ1 cos

(
2πz1

d

)
exp[sum], (28)

τ = 1

2d

∫ d

0
dz1

∫ π

0
sin θ1 dθ1 P2(cos θ1) cos

(
2πz1

d

)
exp[sum], (29)

and the change in density at the transition is found from the relation

1 + �ρ∗ = 1

2d

∫ d

0
dz1

∫ π

0
sin θ1 dθ1 exp[sum]. (30)

Here

sum = �ρ∗ĉ0
00 + 2μ̄ cos

(
2πz1

d

)
ĉ1

00(θ1) + P̄2ĉ0
20(θ1) + P̄4ĉ0

40(θ1)

+ 2τ cos

(
2πz1

d

)
ĉ1

20(θ1), (31)

and

ĉq
L0(θ1) =

(
2l + 1

4π

) 1
2

ρ f

∑
l1l

i l(2l1 + 1)
1
2 (2l + 1)

1
2 Pl1 (cos θ1)Cg(l1 Ll; 000)

×
∫ ∞

0
cl1 Ll(r12) jl(Gqr12)r

2
12 dr12, (32)

where Cg(l1 Ll; 000) are the Clebsch–Gordon coefficients and Gq = 2π/d .
In the isotropic phase all the four order parameters become zero. In the nematic phase

the orientational order parameters P̄2 and P̄4 become nonzero but the other two parameters μ̄

and τ remain zero. This is because the nematic phase has no long-range positional order. In
the smectic A phase all the four order parameters are nonzero, showing that the system has
both the long-range orientational and positional order along one direction. In order to evaluate
the transition parameters, such as order parameters, change in density etc, equations (24)–
(30) were solved self-consistently using the values of harmonics of DCFs cl1l2l(r) evaluated at
a given temperature and density. The calculation was performed with an inter-layer spacing
d = x0 for the smectic A phase. By substituting these solutions in equations (16)–(18), we find
the grand thermodynamic potential difference between ordered and isotropic phases, i.e.

−�W

N
= −�ρ∗ + 1

2
�ρ∗(2 + �ρ∗)ĉ0

00 + 1

2
(P̄2

2 ĉ0
22 + P̄2

4 ĉ0
44) + μ̄2ĉ1

00 + 2μ̄τ ĉ1
20 + τ 2ĉ1

22,

(33)

where

ĉq
L L ′ = (2L + 1)

1
2 (2L ′ + 1)

1
2 ρ f

∑
l

i l

(
2l + 1

4π

) 1
2

Cg(L L ′l; 000)

×
∫ ∞

0
cL L ′l(r12) jl(Gqr12)r

2
12 dr12. (34)

8
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Figure 5. The structural parameter ĉ0
L L′ for GB fluid at x0 = 3.0, and k ′ = 5. The curves with

circles, squares, and triangles are for T ∗ = 1.25, 0.95, and 0.80, respectively.

At a given temperature and density, a phase with the lowest grand potential is taken as the stable
phase. Phase coexistence occurs at the values of ρ f that makes −�W/N = 0 for the ordered
and the liquid phases.

In a theory of freezing of molecular liquids into nematic phase the structural parameters,
ĉq

L L ′ , defined by equation (34), play an important role. The parameter ĉ0
00 is related to the

isothermal compressibility and ĉ0
22 and higher-order coefficients to the freezing parameters. The

quantity ĉ0
22 and ĉ0

44 are found to be very sensitive to the approximations involved in a given
integral equation theory. In figure 5 we plot the structural parameters ĉ0

L L ′ against ρ∗
f (=ρ f σ

3
0 )

found from the PY theory for x0 = 3.0 at T ∗ = 0.80, 0.95, and 1.25. It is seen from this figure
that the values of ĉ0

L L ′ increase with density and deviate from low-density linear behaviour
and increase steeply in the vicinity of the phase transition. These steep increases can in fact
be related to the growth of long-range orientational correlations. Note that, as T ∗ increases,
the phase stability increases towards higher densities and the isotropic–nematic transitions take
place at higher densities.

4. Results and discussion

We have presented a thorough investigation of the temperature dependence and of the isotropic–
nematic transition of the Gay–Berne liquid crystal model. The isotropic–nematic coexistence
parameters of the GB fluid have been determined using the density-functional theory of
freezing. The results of the theory (pressure, order parameters, and the location of the phase
transition) and of several of its extensions are compared with those from computer simulation,
and their relative accuracy is assessed.

9
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Table 1. Isotropic–nematic transition parameters for the GB fluid using the harmonics of the
direct pair-correlation function from the PY theory at x0 = 3.0, k ′ = 5. The reduced units are
P∗ = Pσ 3

0 /ε0, μ∗ = μ/ε0, and ρ∗ = ρσ 3
0 .

T ∗ Theory ρ∗
f ρ∗

n �ρ∗ P̄2 P̄4 P∗ μ∗ ĉ0
22 ĉ0

44

1.25 MC 0.3152 0.3219 0.55 5.20 14.50
DFT 0.3786 0.3820 0.009 0.682 0.381 10.93 34.35 4.198 1.956
MWDA 0.375 0.378 0.007 0.470 0.210 10.42 32.99

1.20 MC 0.3147 0.3213 0.52 4.92 14.32
DFT 0.3703 0.3740 0.001 0.680 0.377 9.31 29.65 4.206 1.924

1.15 MC 0.3129 0.3192 0.56 4.60 13.99
DFT 0.3617 0.3658 0.011 0.679 0.374 7.84 25.31 4.211 1.896

1.10 MC 0.3097 0.3158 0.55 4.19 13.39
DFT 0.3527 0.3571 0.013 0.679 0.373 6.52 21.31 4.215 1.873

1.05 MC 0.3082 0.3144 0.57 3.91 13.13
DFT 0.3431 0.3481 0.014 0.680 0.373 5.35 17.65 4.216 1.856

1.00 MC 0.3076 0.3128 0.52 3.63 12.79
DFT 0.3329 0.3386 0.017 0.684 0.376 4.31 14.31 4.213 1.844

0.95 MC 0.3045 0.3116 0.54 3.31 12.29
DFT 0.3219 0.3285 0.026 0.690 0.381 3.40 11.29 4.207 1.841
MWDA 0.322 0.325 0.008 0.37 0.13 3.40 11.28

0.90 MC 0.3015 0.3069 0.49 2.95 11.59
DFT 0.3099 0.3179 0.026 0.701 0.392 2.61 8.59 4.195 1.846

0.85 MC 0.3013 0.3079 0.53 2.71 11.24
DFT 0.2968 0.3067 0.033 0.717 0.408 1.94 6.20 4.175 1.860

0.80 MC 0.2987 0.3023 0.50 2.39 10.47
DFT 0.2821 0.2952 0.046 0.743 0.434 1.38 4.11 4.143 1.883
MWDA 0.2770 0.2810 0.015 0.36 0.12 1.27 3.69

In table 1 we list the values of the freezing parameters for I–N transition found using
the density-functional theory and the simulation results of Miguel [18] for GB fluid. At
lower temperature the theory shows a good agreement of the coexistence densities (ρ∗

f , ρ
∗
n )

with computer simulation resultss, but the agreement becomes poor as the temperature is
increased. One of the possible reasons for this is the inaccuracy in the values of PCFs at higher
temperatures. This is due to the fact that the PY theory underestimates the angular correlations,
and this effect is more pronounced at higher temperatures than the lower temperatures. We
find that the fluid freezes when the structural parameters ĉ0

22 and ĉ0
44 attain values ∼4.2

and ∼1.8, respectively (see table 1). Note that these numbers vary, though very weakly,
with T ∗; as T ∗ is increased, the value of ĉ0

22 increases while the value of ĉ0
44 decreases.

The structure of the nematic phase near the transition can, therefore, be approximated as a
calculable perturbation of the structure of the coexisting isotropic liquid. The short-range
angular correlation that develops either due to hindered rotation or anisotropy in intermolecular
interactions or due to both is already present in the isotropic phase. When this correlation
grows to a certain finite value (ĉ0

22 ∼ 4.2), the isotropic phase becomes unstable and the system
spontaneously transforms to a nematic phase that has long-range orientational ordering. An
interesting feature can also be noted from table 1; the ĉ0

22 (∼4.2) remains almost constant at
the transition as T ∗ is varied from 0.80 to 1.25. Note that, as T ∗ decreases, the phase stability
decreases towards lower fluid densities and the isotropic–nematic transition take place at lower
densities.

10



J. Phys.: Condens. Matter 19 (2007) 376101 R C Singh

Figure 6. Variation of order parameter P̄n with T ∗ for GB fluid at x0 = 3.0, and k ′ = 5. The solid
curves with circles are the results obtained from the DFT using PY values of c(r). The squares are
the computer simulation results of Miguel [18].

The thermodynamic stability of the nematic phase with respect to the isotropic phase has
been proved for several temperatures above T ∗ = 0.80. In the range of temperatures considered
here, the isotropic–nematic transition is found to be weakly first order. The densities and
pressure at coexistence are found to shift to lower values as the temperature is decreased (see
table 1). The theoretical results show that the coexistence densities (ρ∗

f , ρ
∗
n ) increase with

increasing temperature, and the fractional density changes, �ρ∗, found are rather small, which
is consistent with the fact that the molecules are hard and are not very compressible at the
transition densities. We observe that the values of the orientational order parameters and the
change in density at the transitions are higher than those obtained by computer simulations. It
has already been pointed out in our earlier work [22] that the second-order density-functional
theory has the tendency to overestimate the orientational order parameters and the change in
density. The density-functional theory predicts that the order parameters P̄2 and P̄4 decrease as
the transition temperature is increased (figure 6). This nature reveals quite well the behaviour
of the nematic order as predicted, e.g. by Maier–Saupe theory [31]. The general features of
these quantities are in agreement with the experiment.

We also tried to locate the isotropic–smectic A transition using the order parameter
equations (27)–(30) and energy equation (33). No evidence of smectic-like ordering has been
found at any of the temperatures investigated in this work. The model includes (anisotropic)
attractive interactions, and therefore allows for a systematic study of the effect of varying
temperature on the liquid crystal properties.

The modified weighted-density approximation (MWDA) [32, 33] version of the density-
functional method is expected to improve the agreement. We have checked it by using this
theory to locate the isotropic–nematic transition at T ∗ = 1.25, 0.95, and 0.80. We find that the
results of MWDA are in better agreement with computer simulation than those found from the
second-order density-functional theory (see table 1).
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In conclusion, we wish to emphasize that freezing transitions in complex fluids can
be predicted reasonably well with the density-functional method if the values of the pair-
correlation functions in the isotropic phase are known accurately. The freezing parameters
are sensitive to the accuracy of harmonics of the direct-correlation functions.
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